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Autonomous Exploration for Shape Reconstruction and Measurement

via Informative Contact-Guided Planning
Feiyu Zhao, Chenxi Xiao∗

Abstract—Coordinate Measuring Machines (CMMs) are
widely used for high-precision inspection of industrial parts,
particularly in scenarios where visual systems are ineffective
or cost-prohibitive. However, conventional CMMs rely on CAD
model priors and user-defined probing paths, which limit their
applicability and efficiency in measuring freeform parts. To
overcome these limitations, we present a fully autonomous,
CAD model-free, tactile-based framework that enables dense
3D shape reconstruction to facilitate subsequent measurements.
Our approach leverages a dual Gaussian Process Implicit Sur-
face architecture, termed Exploration-Reconstruction GPIS (ER-
GPIS), which enables both high-fidelity shape reconstruction
and uncertainty estimation on the object’s surface. A hybrid
exploration motion planner is then employed to adaptively sample
surface geometries by integrating local surface exploration, global
exploration, and contact recovery policies for robust shape
estimation. Extensive real-world experiments demonstrate that
the proposed method effectively reconstructs object geometries
across diverse shapes, highlighting its ability to autonomously
reconstruct and measure both surfaces and internal features
without relying on CAD model priors. Our project webpage is
available at https://aesrm.github.io/

Index Terms—Force and Tactile Sensing, Reactive and Sensor-
Based Planning, Planning under Uncertainty

I. INTRODUCTION

COORDINATE Measuring Machines (CMMs) have long
been the golden standard of geometric inspection in mod-

ern manufacturing [1]. By physically probing selected points
on a part’s surface, CMMs verify dimensional tolerances with
exceptional accuracy and repeatability. These systems operate
by executing predefined measurement routines derived from
CAD models, enabling reliable verification of part geometries,
hole positions, flatness, and surface alignments [2]. As a result,
CMMs are indispensable in precision-critical domains such as
robotics [3], where adherence to dimensional specifications
is essential for ensuring performance, interoperability, and
compliance to industrial regulations [4].

However, traditional CMM workflows are limited by their
reliance on pre-defined paths generated from CAD models [5].
Without access to high quality CAD model, CMMs cannot
autonomously determine what or where to measure, rendering
additional human efforts for a wide range of scenarios such
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Fig. 1: Overview of the proposed tactile exploration frame-
work. The E-GPIS and R-GPIS models jointly estimate local
uncertainty and reconstruct the surface shape. Both outputs
guide the Exploration Motion Planner in generating informa-
tive actions. The real robot executes these actions, collects
contact data, and iteratively refines the reconstruction.

as reverse engineering of legacy components, inspection of
worn or damaged parts with missing geometry [6]. Moreover,
CMMs are designed for sparse, point-wise verification rather
than dense data acquisition. As such, they are fundamentally
incapable of reconstructing fine-grained shape [7]. This limi-
tation prevents them from capturing geometric details across
freeform shapes, and therefore the usage of CMMs are mostly
limited in manual paradigms where human efforts are required.

To bridge this gap, we present a fully autonomous tactile-
based framework that models such contact metrology as a
joint active exploration and reconstruction process. Instead
of relying on predefined paths, our system incrementally
probes an unknown object, decides where to explore next,
and reconstructs and measures the object surface from contact
observations alone (as illustrated in Fig. 1). The core of our
framework is a novel dual-Gaussian Process (GP) architecture
ER-GPIS, which explicitly separates surface estimation from
uncertainty modeling in the context of tactile exploration.
Unlike previous approaches that use a single Gaussian Process
to achieve both objectives [8], our decoupled design improves
robustness to intrinsically sparse tactile point clouds while
preserving uncertainty estimation capability (Sec. IV).

The proposed ER-GPIS framework relies on incrementally
sampling informative contact points from the object surface.
To determine the target locations for sampling during explo-

https://aesrm.github.io/
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ration, we introduce a hybrid motion planner (Sec. III-B).
This planner interactively selects a contact sampling strategy
from three policies: local surface sliding to add contact points,
global redirection to maximize surface coverage, and contact
recovery to maintain reliable interaction. These policies are
applied interleavingly to actively guide the end-effector to-
ward informative regions, enabling ER-GPIS to incrementally
acquire high-quality contact observations essential for accurate
shape reconstruction and uncertainty modeling.

To evaluate the effectiveness of the proposed pipeline, real-
world experiments were conducted on a diverse set of test
objects, involving both internal cavities and exterior surfaces.
The results demonstrate that our system accurately recon-
structs 3D geometry using contact data alone and outperforms
previous tactile exploration baselines in terms of completeness,
accuracy, and robustness. In summary, the key contributions
of this work are:

• A CAD-free, vision-free tactile exploration framework
that extends contact-based metrology with autonomous,
dense 3D shape reconstruction capabilities;

• A dual-Gaussian Process modeling approach (ER-GPIS)
that concurrently achieves uncertainty estimation and
accurate reconstruction;

• A hybrid tactile exploration planner that achieves both
exploration efficiency and robustness;

• Comprehensive experiments for revealing usability and
ablation studies.

II. RELATED WORKS

A. Coordinate Measuring Machines

Coordinate Measuring Machines measure object geometries
and are generally classified as contact or non-contact systems.
Non-contact CMMs employ sensors such as cameras, offering
fast and efficient measurements, but they are costly and strug-
gle with reflective or occluded features [9]. Contact CMMs use
mechanical probes to achieve precise, low-cost measurements
that are robust to surface variations [10]. Such systems are
more commonly used, but rely on manually defined trajec-
tories [11], and often result in sparse data. To automate
this process, recent research has leveraged CAD models for
feature identification and motion planning [12], optimizing
probing paths for efficiency and collision avoidance [13], [14].
However, these approaches are not suitable when CAD data
are unavailable or inaccurate [2], leaving manual measurement
still the most common approach. To address this limitation, we
propose a CAD-independent tactile exploration framework that
reconstructs object surfaces and enables adaptive measurement
through real-time contact feedback in uncertain environments.

B. 3D Reconstruction

Reconstructing 3D shape has been one central focus in
robot perception and computer vision. Traditional methods
rely on explicit representations such as point clouds or voxel
grids [15], [16], which require a large number of points or
camera views to achieve fine detail. Recent research has shifted
toward implicit representations, such as NeRF [17] and 3D

Gaussian Splatting [18] can generate photorealistic, novel-
view renderings. However, since these methods were originally
designed for visual rendering. Recent research has combined
touch, such as creating multimodal representations [19], and
refining contact relationship to enhance geometric fidelity [20],
[21]. Signed Distance Functions (SDFs) offer another powerful
form of implicit representation [22]. They are continuous,
memory-efficient, and guarantee watertight surfaces, making
them particularly suitable for applications involving contact
and physical interaction. Consequently, SDFs have become
a common choice for representing shape information derived
from tactile sensing, such as via GP regressors [8], [23], [24].

C. Active Tactile Exploration
Active tactile exploration is a process in which a robot

leverages tactile sensing to proactively probe and infer object
properties. This exploration serves multiple purposes. First,
it enables the robot to inspect object geometry in regions
where visual data are unavailable due to occlusions [23],
[25], transparency [26], or reflectivity [20], [27], providing an
alternative means to recover object shape. Beyond geometric
understanding, tactile exploration allows the acquisition of ad-
ditional object properties, such as estimating the center of mass
[28], assessing hardness [29], and facilitating manipulation
skill learning [30], thereby extending perception to multimodal
information beyond vision. This ability to actively acquire
information is essential for robots to develop a comprehensive
understanding of their surroundings.

D. Uncertainty-based Tactile Exploration for Reconstruction
One research direction for reconstruction leveraging ac-

tive tactile exploration focuses on determining the next-best
probing location to maximize information gain. This process
first requires quantifying uncertainty about the object’s shape.
Common approaches employ GP [31], [32] and ergodic met-
rics [33], [34] to represent and evaluate such uncertainty. Once
an uncertainty map is established, various planning strategies
can be applied to guide the exploration. These range from
greedy methods [35], which myopically select the next best
touch point, to short-horizon planners based on optimiza-
tion [8], [36], and long-horizon planners that optimize an entire
sequence of future actions [37]. More recently, reinforcement
learning has been explored to predict next-best actions [38].
Despite these advancements, most existing studies have been
validated only on very limited set of objects. Our work extends
these methods toward practical applications and demonstrates
improved robustness through comprehensive experiments.

III. METHODOLOGY

To enable autonomous shape reconstruction and measure-
ment, we present a unified framework via active tactile ex-
ploration. The proposed approach integrates two main compo-
nents: (1) a dual-Gaussian Process model, ER-GPIS, which
simultaneously estimates object shape and associated uncer-
tainty, and (2) a hybrid Exploration Motion Planner that lever-
ages the estimated shape and uncertainty to guide exploration
movements. The overall pipeline of the proposed system is
illustrated in Fig. 2.
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Fig. 2: Overview of the proposed technical pipeline. The system consists of three interconnected modules: (1) Shape
& Uncertainty Estimation: Two Gaussian Process models are employed. E-GPIS estimates uncertainty σ2

E(x) to guide
exploration, while the R-GPIS estimates µ2

R(x) for shape reconstruction. (2) Exploration Motion Planner: The motion direction
d is calculated from either of three policies to guide exploration: Local Sliding Policy slides toward higher local uncertainty
dlocal; Global Exploration Policy redirects toward highest global uncertain regions dglobal; Contact Recovery Policy restores
contact along surface normals drecontact. (3) Robot Execution: The robot system includes an FT-sensor, and an exploration
probe. The selected direction is executed on this robot system via a low-level controller.

A. Shape and Uncertainty Estimation via ER-GPIS

Unlike visual observations with dense point clouds, tactile
sensing provides inherently sparse contact points, resulting
in limited prior information for surface reconstruction. To
address this sparsity, the GPIS algorithm [39] has previously
been adopted, which regresses the Signed Distance Function
(SDF) by leveraging spatial smoothness assumptions encoded
in kernel functions. This provides prior that enables inference
of the global object shape from only a few contact locations.
Specifically, the GPIS model is characterized by a GP prior:

f(x) ∼ GP(m(x), k(x,x′)) (1)
where m(x) is a prior mean function, and k(x,x′) : R3 ×
R3 → R is a covariance (kernel) function. Here, x and
x′ denote input locations in the domain R3. The posterior
distribution f(x) is given by:

p(f(x) | X,y) ∼ N (µ(x), σ2(x)) (2)
with

µ(x) = m(x) + kT (K+ σ2
nI)

−1(y −m(X)) (3)

σ2(x) = k(x,x)− kT (K+ σ2
nI)

−1k (4)
Here, X = [x1, . . . ,xN ]T and y = [y1, . . . , yN ]T

are the observed inputs and outputs. The kernel matrix
K ∈ RN×N has entries Kij = k(xi,xj), and k =
[k(x,x1), . . . , k(x,xN )]T is the kernel vector between the test
point x and training inputs. Conditioned on the prior mean
function m(x) that encodes function values in regions without
observations, the GPIS model implicitly represents the object
surface as the zero level set of the posterior mean:

S =
{
x ∈ R3 | µ(x) = 0

}
. (5)

The posterior variance σ2(x) quantifies the uncertainty
associated with the prediction.

However, faithfully regressing SDF values requires infor-
mation from both inside and outside the object, while interior
regions are physically inaccessible to touch. A common prac-
tice is to augment the training set with auxiliary off-surface
samples treated as pseudo-observations with prescribed SDF
targets [39]; but it has been reported that placing such off-
surface points in inaccurate locations requires caution to avoid
biasing the model [35]. Driess et al. [8] addressed this by
setting the prior mean to m = 1, encoding the assumption
that most of the space is empty and thus avoiding the need
for artificial points and normals. Nevertheless, we found this
approach is still sensitive to hyperparameters and prone to
reconstruction instability. More recently, uGPIS [40] achieved
robust shape reconstruction without internal points or surface
normals, but their method lacks reliable uncertainty estimation,
which is essential for exploration guidance.

To overcome these limitations, we propose the Exploration-
Reconstruction GPIS (ER-GPIS) framework, which addresses
the aforementioned issues by achieving shape reconstruction
and uncertainty modeling using two separate Gaussian Process
models. This design allows ER-GPIS to leverage the robust-
ness of uGPIS while overcoming the limitations of both uGPIS
and conventional GPIS: it eliminates the need for normal-
based off-surface points and simultaneously provides reliable
uncertainty estimation. Specifically, ER-GPIS consists of two
components: Exploration GPIS (E-GPIS), which computes
uncertainty for motion planning, and Reconstruction GPIS (R-
GPIS) for robust surface reconstruction, as detailed below.

1) Exploration GPIS (E-GPIS): To estimate uncertainty
that highlights informative regions for next-best touch, we
construct an E-GPIS model that predicts spatial uncertainty
using a dataset of contact and dummy points overlapping with
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the probe, denoted as DE. Specifically, DE = Dc ∪Dd, where
Dc contains the observed contact locations with 0 SDF values,
and Dd consists of known void locations without contact
(with SDF value 1). The E-GPIS computes the predictive
variance σ2

E(x) at unvisited locations via Eq. 2, generating
a spatial uncertainty map that guides the exploration planner
(see Sec. III-B). We set the prior mean function m(x) = 1,
following [8], which encodes the assumption that regions far
from detected contacts are empty.

2) Reconstruction GPIS (R-GPIS): To robustly reconstruct
object shape, ER-GPIS incorporates a second Gaussian Pro-
cess model to regress occupancy probability for shape estima-
tion, following [40]. Our method overcomes uGPIS’s inability
to accurately estimate uncertainty. To achieve this, a global
dataset DR = Dc ∪ Da is constructed, containing contact
points Dc labeled with occupancy probability 1, along with
additional auxiliary points Da uniformly sampled in void
regions labeled as 0. The R-GPIS model is then trained on
this binary occupancy dataset DR, producing a posterior mean
field µR(x) representing the predicted occupancy probability.
For R-GPIS, we set the prior mean function m(x) = 0 to
indicate zero occupancy when far from known contact points.

To obtain the reconstructed object shape Srecon from the
posterior mean field, we apply a bounded threshold based on
the predicted mean values µR(x) at the contact points. Since
all contact points are assumed to lie on the object surface, we
first compute the µR(x) for all points in the contact set Dc,
and define the lower and upper bounds [µmin, µmax] as the 5th
and 95th percentiles of µR(x) for all x ∈ Dc, respectively. The
final reconstruction is then defined as:

Srecon =
{
x ∈ R3 | µmin ≤ µR(x) ≤ µmax

}
(6)

B. Exploration Motion Planner

To plan motion for tactile exploration, we propose a hybrid
motion planner that autonomously selects among three motion
policies based on the current context:

1) Local Sliding Policy guides the robot to maximize the
utility of collected data via sliding motion;

2) Global Exploration Policy prevents the robot from get-
ting trapped in local optima by redirecting it toward
regions of higher uncertainty;

3) Contact Recovery Policy re-establishes contact with the
surface when contact is lost.

The above three policies constitute a state machine. This
section details the implementation of each policy as follows.

1) Local Sliding Policy: Compared to the discrete sampling
used in conventional CMMs, sliding motion improves sam-
pling efficiency by generating a continuous stream of contact
points. This sliding motion is implemented using a hybrid
force-position control scheme that maintains compliant contact
while guiding movement toward regions of high predicted
uncertainty. Specifically, the hybrid controller slides the probe
along the tangential direction of the object surface to acquire
informative data, while simultaneously applying force along
the surface normal to maintain a user-specified target contact
force ftarget. To enable this, we first estimate the surface normal
nf from the sensed contact force f = f

∥f∥ . The tangential

direction at the contact point is then defined using a projection
onto the local tangent plane, which constrains the sliding
direction using a projection matrix Pnf

:

Pnf
(x) = I− nfn

T
f (7)

Next, to guide the robot toward unexplored regions, we define
a utility function that encourages movement toward areas
of high uncertainty while penalizing actions that exceed the
workspace boundaries. This function is defined as:

a(x) = σ2
E(x)− ψz(xz) (8)

Here, σ2
E(x) represents the uncertainty predicted by E-GPIS.

The term ψz(xz) aims to constrain the motion within the
workspace. In our implementation, we regulate the vertical
position of the probe using the following equation:

ψz(xz) =


λ(xz − zmax)

2, xz > zmax

λ(zmin − xz)
2, xz < zmin

0, otherwise
(9)

To maximize the accumulated utility function
∫
a(x) along

the sliding motion path, robot actions are determined by
combining two components: a lateral term

Pnf
(x)∇a(x)

∥Pnf
(x)∇a(x)∥

which drives the end-effector toward informative regions, and
a normal term aligned with nf , which maintains compliant
contact with the surface. These components are combined to
produce the final direction for local sliding motion:

dlocal = α ·
Pnf

(x)∇a(x)
∥Pnf

(x)∇a(x)∥
+ γ · (fc − ftarget) · nf (10)

where fc = f · nf is the contact force projected along the
estimated surface normal, and α, γ are weights that balance
the influence of the exploration and compliant interaction
components, respectively.

2) Global Exploration Policy: The utility function (Eq. 8)
is non-convex, and therefore the control law (Eq. 10) may
become trapped in local optima. To address this, Global Ex-
ploration Policy is triggered when the maximum displacement
max(∥xi − x0∥) from the initial probe position x0 (at the
beginning of the current iteration) falls below a threshold δ.

During global exploration, the probe is temporarily detached
from the object surface and redirected to a new target location
on the reconstructed manifold by R-GPIS: x ∈ Srecon. This
location is selected as the one with the highest utility value:

xglobal = arg max
x∈Srecon

a(x) (11)

Then, the exploratory direction is computed as an unit vector
from the current probe position xt to the selected target:

dglobal =
xglobal − xt

∥xglobal − xt∥
(12)

Note that in order to move to xglobal, the probe follows different
strategies depending on the type of object geometry. For
internal cavities, it directly moves along dglobal until the next
contact is made. For exterior surfaces, the probe first rises to
a collision-free height zmax, then moves laterally along dglobal
to a position above the xglobal, and finally descends vertically
until contact is re-established. This strategy enables the robot
to escape local optima in exploration and resume collection in
more informative regions, thereby improving overall efficiency
for surface coverage.
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3) Contact Recovery Policy: When sliding along object
surfaces, the sliding policy may fail to maintain stable contact,
especially near high-curvature or discontinued surface regions.
To address this, we introduce a Contact Recovery Policy that
helps the probe re-establish contact after detachment.

The recontact direction is estimated from the R-GPIS model
as the normalized gradient of the predictive mean. Theo-
retically, this guides the probe back toward the object, as
the occupancy probability increases along this direction. The
resulting recontact direction is given by:

drecontact = n̂(x) =
∇µR(x)

∥∇µR(x)∥
(13)

IV. EXPERIMENTS

We evaluated the effectiveness of the proposed approach in
shape reconstruction and measurement tasks using a diverse set
of objects. First, we describe the hardware setup in Sec. IV-A.
Then, we conduct comprehensive experiments to answer the
following key questions:

• Q1: Can our method autonomously explore unknown
object surfaces without geometric priors (Sec. IV-B)?

• Q2: Can the framework accurately reconstruct object
shapes using only contact feedback to support geometric
measurements (Sec. IV-C)?

• Q3: Does the full system achieve more robust and com-
plete reconstructions compared to its ablated variants and
prior tactile exploration methods (Sec. IV-D)?

A. System Setup and Task Description

X-Arm Collaborative 
Robot

6-axis FT Sensor

Exploration Probe

Test Objects

Fig. 3: Real-world experimental setup. The system consists of
a 6-DoF X-Arm robotic manipulator, a force–torque sensor, a
probing tool, and a diverse set of test objects for evaluation.

Our hardware configuration is shown in Fig. 3. The system
consists of an X-Arm 6 collaborative robot equipped with a
γ45 force–torque (FT) sensor (Decent Inc.) mounted at the
end effector. A probe with a spherical tip is used to interact
with object surfaces during exploration. We compensate for
the probe’s spherical geometry through post-processing. First,
the extracted shape Srecon is represented as a point cloud.
Then, R-GPIS predicts per point normal as the gradient of the
occupancy function. The final shape is obtained by shifting
the points outward along the reversed normal direction by the
probe radius (10mm). Finally, an outlier removal process is
applied following [41].

Since the X-Arm does not support joint-level force control,
we implement a hybrid position-based controller at the task

space. At each step, the motion command is computed ac-
cording to the selected exploration policy. The position is then
updated as ∆xt = d·∆t, where d ∈ {dlocal, dglobal, drecontact}
is the motion direction computed by the Exploration Motion
Planner (Sec. III-B), and ∆t is the control time step.

For all experiments, the control step size was set to ∆t =
0.001. The Exploration Motion Planner was configured with
fixed parameters: α = 0.4, γ = 1.0, λ = 1000, and
ftarget = 1.0N. The parameters α and γ were empirically
tuned to achieve smooth motion by balancing normal and
tangential force components, while λ was found to be robust
to parameter variations. The target force ftarget was chosen
to ensure stable yet minimally intrusive contact. For OBJ.1–
4 (cavity-type objects), the system executed up to 120 ER-
GPIS updates, with motion constrained along the cavity depth.
For OBJ.5–8 (surface-type objects), up to 400 updates were
allowed, with motion constrained along the object height.

B. Effectiveness of the Tactile Exploration Policy

To evaluate whether the proposed tactile exploration pol-
icy can autonomously guide the robot to explore unknown
object surfaces without geometric priors (Q1), we conducted
experiments on two types of structures, as shown in Fig. 4-1.
The test objects include four internal cavities (a cylindrical
hole, an inclined ring, an irregular cavity, and an emoji-like
structure) and four exterior surfaces (a conical frustum, a
hemispherical bump, a smooth dome, and a polygonal surface).
The corresponding exploration trajectories are shown in Fig. 4-
2. For all objects, we observed trajectories from sliding motion
(black lines) and global redirection to underexplored regions
with high uncertainty (red lines).

During exploration, the evolution of uncertainty acquired
by the exploration policy is shown in Fig. 5. Overall, the
sliding policy reduces uncertainty over time. When the rate of
uncertainty reduction slows down (indicating that the utility
function is trapped in local optima, as seen where the curve in
Fig. 5 flattens), the policy redirects the probe toward regions
with higher uncertainty, causing an increase in the uncertainty
metric. This mechanism enables the policy to escape local
optima and guide the robot toward unexplored regions, which
is essential for achieving complete and robust surface cover-
age. Finally, the trajectory covers most regions of the object
surface (Fig. 4-2). These results confirm the proposed method
supports model-free tactile exploration across diverse surface
profiles (Q1).

C. Accuracy of Reconstruction and Measurement

Next, we evaluate whether the proposed framework can
accurately reconstruct object geometry (Q2). This requires ef-
fective exploration (Q1), and also a high-fidelity reconstruction
algorithm capable of handling sparse tactile observations.

To assess reconstruction quality, we measure accuracy using
both qualitative visualization (Fig. 4-3) and three quantitative
metrics. First, the Chamfer Distance (CD) measures global
shape similarity between the reconstructed point cloud and
the ground truth (downsampled to 2000 points from the
mesh) and is sensitive to incomplete regions. Second, the
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(a) OBJ.1 (b) OBJ.2 (c) OBJ.3 (d) OBJ.4 (e) OBJ.5 (f) OBJ.6 (g) OBJ.7 (h) OBJ.8

1) Real-Object

2) Trajectory

3) Reconstructed

shape

Fig. 4: Visualization of eight test cases (OBJ.1–OBJ.8): real objects (top), exploration trajectories (middle), and reconstructed
shapes (bottom). OBJ.1–OBJ.4 correspond to internal cavities (cylindrical, inclined, irregular, and emoji-shaped), while
OBJ.5–OBJ.8 represent exterior surfaces (conical, hemispherical, domed, and polygonal). In the middle row, black traces
indicate local sliding motions along contacted surfaces, and red segments or points denote global-policy redirections toward
high-uncertainty regions. The bottom row presents reconstructions generated by the proposed R-GPIS using tactile contacts
only, where point colors represent height along the z-axis.

Fig. 5: Evolution of the estimated uncertainty during explo-
ration on OBJ.1–OBJ.4 (top) and OBJ.5–OBJ.8 (bottom). The
vertical axis denotes the mean predictive variance of ER-GPIS
at the probe’s location, where higher values indicate faster
information acquisition, and a rise reflects the activation of
the global exploration policy. The horizontal axis represents
the exploration steps.

Root Mean Square Deviation (RMSD) reflects local surface
accuracy using one-sided point-to-mesh distances. Third, to
evaluate whether the measured shape dimensions are biased,
we compute the diameter error of the circumscribed circle
between the measured data and the ground truth.

The results in Fig. 4-3 and Table I demonstrates that
our method achieves high-fidelity shape reconstruction. All
reconstructed shapes exhibit globally consistent topology and
geometrically plausible surfaces. Quantitatively, the average
resulting Chamfer Distance (CD) is 5.270mm2, the average
resulting Root Mean Square Deviation (RMSD) is 2.046mm,
and the average resulting diameter error is 2.865mm. No-
tably, performance varies with surface complexity: for in-
stance, OBJ.1, OBJ.6 and OBJ.7 (cylindrical, hemispherical
and domed) achieve the highest accuracy due to their uniform
curvature and consistent contact normals. In contrast, larger
errors observed on OBJ.3 and OBJ.8 (irregular and polyg-

onal) reflect challenges introduced by discontinuous edges,
tilted surfaces, and reduced contact coverage. Despite slight
inaccuracies, all reconstructions are complete and successful.
This confirms that our method enables reliable reconstruction
and measurement across both internal and external geometries
using tactile data alone without requiring CAD priors (Q2).

D. Ablation Studies

To examine whether the full integration of our exploration
policy outperforms ablated baselines (Q3), we conduct abla-
tion studies using OBJ.1. This object is selected for compar-
ison because it is the simplest object that all methods can
reconstruct to a comparable extent. Other objects may present
challenges for baselines, resulting in large variance or failures.

Comparison Experiments. Comparisons were conducted
under the following configurations: (1) our full framework
with all components enabled; (2) an ablated variant without the
global exploration policy, but with ER-GPIS and the contact
recovery policy; (3) without the contact recovery policy, but
with ER-GPIS and the global exploration policy; (4) without
both the global exploration and contact recovery policies, but
with ER-GPIS; (5) a minimal baseline using a single GPIS for
both exploration and reconstruction, consistent with previous
works [8]; and (6) the same baseline as (5) but augmented with
our global exploration strategy. The results are summarized in
Table II. Our full pipeline consistently achieves the best overall
performance, with the removal of any introduced component
leading to degraded accuracy and efficiency. Besides, we
observed our approach outperforms the baseline method in
reconstruction quality, though the wall-clock exploration time
is slightly longer due to usage of global exploration policy (6
min 18 sec vs. 5 min 34 sec) (Q3).

Compare with RL-based approach. Furthermore, we eval-
uated our method against the RL-based Actexplore [38] using
a 3D-printed replica of its demonstration object. Our method
achieved near-complete surface coverage within 25 min and
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TABLE I: Quantitative evaluation of reconstruction accuracy, runtime, and peak memory usage across all test objects.

Object OBJ.1 (cylindrical) OBJ.2 (inclined) OBJ.3 (irregular) OBJ.4 (emoji) OBJ.5 (conical) OBJ.6 (hemispherical) OBJ.7 (domed) OBJ.8 (polygonal) Average

CD (mm2) 3.02 4.50 4.35 8.53 7.54 2.86 3.01 8.80 5.270
RMSD (mm) 0.85 1.10 5.17 2.81 1.94 1.19 1.22 2.09 2.046
Dia. Err. (mm) 3.81 2.10 4.89 5.29 2.12 0.97 1.08 2.66 2.865

Run Time (min) 6m18s 6m03s 6m15s 8m39s 25m00s 14m19s 18m15s 21m39s –
GPU Memory (GB) 3.6 3.4 3.5 4.1 12.1 7.4 7.5 8.1 –

TABLE II: Compare with ablated variants and baseline [8].

Variant CD↓ RMSD↓ Dia. Err.↓
Benchmark (Ours) 3.02 0.85 3.81
w/o Global Policy 5.91 2.32 4.65
w/o Recontact Policy 7.78 2.85 5.14
w/o Global + Recontact Policy 19.92 5.41 –

Driess et al. [8] 12.45 2.49 14.18
Driess et al. [8] + Global Policy 11.02 2.35 11.47
Note: CD is measured in mm2; RMSD and Dia. Err. are in mm.
“–” indicates measurement failure due to unclosed reconstruction.

Fig. 6: Inference time comparison of different GP regressors
on GPU and CPU, q denotes No. points paralleled for query.

successfully reconstructed the object’s shape, whereas Actex-
plore covered only local regions even after 40min and failed
to produce a usable reconstruction. We attribute this advantage
to the efficiency of sliding motion, and our optimization-based
approach, which does not suffer from generalization issues
when encountering new objects.

Computational Costs. We analyzed the computational cost
of ER-GPIS, implemented using a GPU-accelerated Gaussian
Process framework [42]. The model’s inference and memory
complexity are both O(N2), similar to other GPIS-based
methods [8]. Although maintaining two GP models increases
resource usage, the cost remains manageable. Fig. 6 compares
the inference time of ER-GP with other GP variants on both
GPU and CPU. For contact point sets up to 2,000 (typical
for most objects), ER-GP achieves inference times on the
order of tens of milliseconds for batched evaluations of 10,000
query points. Although it is slightly slower than our modified
GPU-based GP implementation (following [8]), it remains
significantly faster than conventional CPU-based approaches.
Furthermore, employing Sparse GP methods [43], [44] could
offer additional scalability at the expense of accuracy. Con-
sidering the communication latency between the computing
unit and robot hardware, the overall planning loop operates at
approximately 8–16 Hz.

V. DISCUSSIONS

The proposed approach enables robust shape exploration,
reconstruction, and measurement using a robotic system.
Despite its effectiveness, several technical limitations were
observed. First, the spatial resolution of the reconstructed
surface is fundamentally limited by the hardware. Our system
was implemented and evaluated on a collaborative robotic
arm whose motion precision does not yet match that of
high-end metrology-grade commercial CMMs. This choice
was motivated by the closed-source nature of most industrial
CMMs, which do not permit algorithmic customization.

Second, the reconstruction accuracy is constrained by the
expressive ability of the GPIS model. Specifically, the kernel-
based representation struggles to capture sharp and high-
curvature regions. As a result, the model tends to smooth
out fine geometric details such as edges and sharp corners.
This limitation can be partially addressed by collecting more
contact data in high-curvature regions. Future work will ex-
plore post-processing strategies to enhance geometric sharp-
ness [45] and investigate the use of visuo-tactile sensors for
richer local geometric information to improve reconstruction
accuracy, such as following the perception setting of [38],
and will further seek to reduce runtime through algorithmic
and implementation optimizations so as to better adapt the
framework to industrial scenarios.

VI. CONCLUSIONS

This paper presents a fully autonomous, tactile-based frame-
work that enables dense 3D shape acquisition and reconstruc-
tion for industrial part measurement. The proposed system
integrates three key components: a dual Gaussian Process
framework (ER-GPIS) for simultaneous shape reconstruction
and uncertainty estimation, coupled with a hybrid exploratory
motion planning strategy that integrates sliding motion, global
exploration, and contact recovery. The framework is validated
on a real robot using a diverse set of objects featuring both
internal cavities and exterior surface profiles. The system
achieved accurate reconstructions with high coverage, report-
ing low reconstruction errors and reliable dimensional mea-
surements across various geometries. These results demon-
strate the framework’s potential to enable model-free, contact-
based inspection in scenarios where conventional coordinate
measuring machines cannot perform automated measurements
and where vision-based methods fail under challenging visual
conditions (e.g., occlusion, transparency, or poor illumination).
Future work will focus on enhancing the shape expressiveness
of ER-GPIS, integrating visuo-tactile sensors, and deploying
the system on metrology-grade CMMs to further validate its
measurement precision.
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chining contact and non-contact inspection technologies in industrial
application,” Journal of Production Engineering, pp. 55–60, 2018.

[8] D. Driess, P. Englert, and M. Toussaint, “Active learning with query
paths for tactile object shape exploration,” in 2017 IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS). IEEE, 2017,
pp. 65–72.

[9] S. Catalucci, A. Thompson, S. Piano, D. T. Branson III, and R. Leach,
“Optical metrology for digital manufacturing: a review,” The Interna-
tional Journal of Advanced Manufacturing Technology, vol. 120, no. 7,
pp. 4271–4290, 2022.

[10] S. Yan, J. Shi, G. Li, C. Hao, Y. Wang, H. Yu, and W. Zhou, “Advances
in aeroengine cooling hole measurement: A comprehensive review,”
Sensors, vol. 24, no. 7, p. 2152, 2024.

[11] Z. Luthuli, “Traceability of measurements in optical coordinate measur-
ing machines,” Ph.D. dissertation, Stellenbosch: Stellenbosch University,
2020.

[12] E. Abouel Nasr, A. Al-Ahmari, A. A. Khan, S. H. Mian, O. Abdul-
hameed, and A. Kamrani, “Integrated system for automation of process,
fixture and inspection planning,” Journal of the Brazilian Society of
Mechanical Sciences and Engineering, vol. 42, no. 1, p. 52, 2020.

[13] Y. Liu, W. Zhao, R. Sun, and X. Yue, “Optimal path planning for
automated dimensional inspection of free-form surfaces,” Journal of
Manufacturing Systems, vol. 56, pp. 84–92, 2020.
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